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ABSTRACT

Problems requiring regression analysis of censored data
arise frequently in practice. For example, in accelerated
testing one wishes to relate stress and average time to failure
from data including unfailed units, i.e., censored observations.

Maximum likelihood is one method for obtaining the desired
estimates; in this paper, we propose an alternative approach.
An initial least squares fit is obtained treating the censored
values as failures. Then, based upon this initial fit, the
expected failure time for each censored observation is estimated.
These estimates are then used, instead of the censoring times,
to obtain a revised least squares fit and new expected failure
times are estimated for the censored values. These are then
used in a further least squares fit. The procedure is iterated
until convergence is achieved. This method is simpler to imple- ;
ment and explain to non-statisticians than maximum likelihood
and appears to have good statistical and convergence properties.

The method is illustrated by an example, and some simulation

results are described. Variations and areas for further study




also are discussed.

KEY WORDS: Censored data, regression analysis, maximum
likelihood, accelerated testing, life testing,
least squares.
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INTRODUCTION

Statistical relationships between variables must
often be fitted from data including censored observations.
For example, in evaluating material properties, life tests
are conducted at accelerated stresses; the resulting data
are used to relate stress and average time to failure
assuming a model, such as the Arrhenius relationship or the
inverse power law. However, at low stress conditions -- the
region of greatest interest -- some test units remain
unfailed by the time the data must be analyzed, thus resulting
in censored observations. Indeed, a test program which is
designed to assure that all units fail within the available
testing time might require stresses to be accelerated to such
an extreme that new failure modes are introduced and the
assumed model is no longer valid.

Maximum likelihood is one method for obtaining the
desired estimates frcm the resulting censcred data. 1In
practice, however, data from test programs involving cen-
soring are frequently analyzed, not by a professional
statistician, but by an engineer or scientist who has had
only limited training in statistics. Such persons generally
have not been exposed to maximum likelihood methods and
may not have easy access to a computer program for performing
the complex required calculations. Instead, we have found

that censored data are frequently analyzed incorrectly by

standard least squares techniques for complete data using

one of the following two expediencies to remove the censoring:
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- Treating the censored observations as if they were
uncensored, e.g., in analyzing product life data,
assuming the censoring times to be failure times.

- Ignoring the censored observations altogether.

Both of these procedures lead to bhiased estimates of

the regression line. 1In particular, they result on the

average in overly conservative estimates of product life

at design conditions; the first procedure incorrectly
assumes that a failure has taken place when, in

fact, it has nct, while the second approach ignores

valid data on unfailed units (often at the conditions

of greatest practical interest). These two incorrect

procedures also produce biased estimates of the variability

around the fitted line, as measured by the residual error
variance. Both cases underestimate the values on the
average, resulting in too short a confidence interval

on the average life at a design condition.

It is therefore desirable to have methods for
analyzing censored data which are relatively simple to
explain to non-statisticians and to apply by them, in
addition to having good statistical properties. One such

method, based upcn an iterative least squares approach,

is proposed here. To apply this method to fit standard
relationships for censored data under the usual assumptions,
such as a normal or log normal distribution for the random
variation, requires only a computer rcutine for least
squares regression analysis and a tabulation or calculation

of normal distribution ordinates and areas.




Most of the subsequent discussion will be in the
context of product life analysis and thus will be con-
cerned with censoring to the right. Also, we will be
principally concerned with the single censoring situation

where the censoring times exceed the failure times at each

stress, i.e., so-called Type I or time-censoring. As we
will indicate later, the basic approach also applies for
more general situations.

In summary, the proposed method is: At Step 1 of
Iteration 0 obtain an initial least squares fit from the
i given data treating the censored values as failures. At
. Step 2 of this iteration use this initial fit to estimate

the expected failure time for each unfailed unit, conditional

| upon its observed censoring time. To obtain a revised least
squares fit at Step 1 of Iteration 1, use these estimates of

expected failure times for the unfailed units in place of

the censoring times. At Step 2 of Iteration 1

{ estimate from this new fit the new expected running times
| for the censored observations. At Iteration 2 use these new i
|

estimates in a further least squares fit. Iterate this pro-

cedure until convergence is achieved.

In Section 2 of this paper, relevant past results are j
reviewed. Section 3 provides details of the proposed |
iterative least squares procedure for a simple linear model,
f normally distributed random variation and censoring to the
right. This method is illustrated by a numerical example

in Section 4. These analyses should suggest the use of the

{ method for more general situations. 1In Section 5 the statis-
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tical properties of the proposcd procedure are evaluated
by a simulation analysis and compared with those of the
method of maximum likelihood. Generalizations of the
results and areas for further study are discussed in
Section 6 and 7 respectively, and some concluding remarks

2re made in Section 8.




RELATED WORK AND LITERATURE

Hahn and Nelson (3] describe and compare three general
methods for analyzing censored life data to estimate rela-
tionships between stress and product life:

- Maximum likelihood estimation

- Linear unbiased methods

- Graphical methods.

The method of maximum likelihood is the most general of

these approaches and is, perhaps, the one used most frequently
by statisticians. However, it requires special computer
programs, such as GE STATPAC, see Nelson, Morgan and

Capcral L11] which are often not readily available to
analysts. Also, maximum likelihood estimates are subject

to small sample bias. Graphical methods provide useful
supplements to a more formal analysis, but are subjective

in nature. The linear estimation methods are computationally
simpler than the maximum likelihood methods. However,

unlike the procedures we propose in this paper, they are
strictly applicable to Type II censoring only. This means,
for example, that the information at test conditions where

no failures have occurred is ignored in the analysis. These
conditions, however, are frequently the ones of greatest
practical interest.

Hartley | 41 proposes an iterative maximum likelihood
approach which bears some similarity to the proposed
iterative least squares procedure. In Hartley's paper,
the missinag observations are replaced by introducing

pseudo-frequencies and applying the standard maximum

likelihood procedures for complete data.




Further discussion of this method and some extensions
are given by Hartley and Hocking [ 51, Hughes [ 61, and
Krane [ 8]. 1In a recent paper, Dempster, Laird and

Rubin [ 2] describe an algorithm for maximum likelihood
estimation; this algorithm can also be applied to the

problem considered in this paper (see Section 7).




DESCRIPTION OF METHOD FOR SIMPLE SITUATION

Assume the standard simple regression model within
the region of interest between the stress x and the
average time to failure My for some device on life test
at that stress, i.e.,

My = Bg +8% (1)
where, at any stress, (log) time to failure is normally

distributed with a constant standard deviation o and where

and ¢ are unknown parameters. One or more units

B B

3
are tested at each of several stresses. The resulting

data, after Cy units of running time at the various stresses,
consist of the failure times (icx) on the failed units and
the running times c, on the unfailed units or "run-outs."
At some (usually high stress) conditions, there may be

only failures and, at other (usually low stress) conditions,
there may be only run-outs.

Let A denote the censoring time for a particular
run-out at stress x. Then, using the well-known properties
of the truncated normal distribution (see Johnson and
Leone [ 7] or Nelson [9]), the expected value u; of the
failure time for this unit is:

uE =+ of(z)/[1-F(2)] (2a)
where

z = (cx - ux)/c (2b)
and f(z) and F(z) denote, respectively, the ordinate at z
and the area to the left of z of a unit normal distribution.

Thus, for this situation, the iterative least squares

procedure is as follows:




Iteration 0

Step 1: Fit the linear relationship using standard least

squares regression analysis, treating the run-outs as if

they failed a. their censoring times. Let BO(O), Bl(o)
and 0(0) denote the resulting initial estimates of
60’ Bl and o respectively.

Step 2: Use the initial regression fit from Step 1 to
estimate the unconditional mean time to failure for each

run-out. Denote the resulting estimate at stress x as
ux(o). Then, use the initial estimates ux(O) and 0(0),
instead of the unknown values Mo and o0, to estimate the

. . %0}
mean failure time Ux

for each run-out x using equations
(2a) and (2b).

Iteration 1

Step 1l: Obtain a revised least squares regression fit

~*(0)

using the estimated mean failure times My obtained in

Step 2 of the previous iteration for the run-outs. Let
Sl 8 SER S 0 ULy
2
bO ; Bl and o
Step 2: Repeat Step 2 of the previous iteration using the

denote the new estimates of BO, B and o,

least squares estimates obtained in Step 1 of the current itera-
tion to re-estimate the mean times to failure for the run-outs.
Subsequent Iterations: Continue the above procedure until
convergence is achieved.

As indicated, the preceding iterative least squares
procedure requires only a standard computer program for

regression analysis end tabulations or calculations of the

ordinates and tail areas for a standard normal distribution




or a tabulation of the expected values of a truncated
normal variate. In practice, one might wish to mechanize
the process by writing a computer routine to perform the
iterations. We have developed such a program, using
standard approximations for normal distribution ordinates
and areas. This program is used for the simulation analysis
described in Section 5. It is less complicated than the
companion program used in Section 5 for obtaining estimates
by the method of maximum likelihood.

The speed of convergence depends on the proportion
of censored observation. The iterations in the simulation
analysis were stopped after both the slope and intercept
estimates agreed to 3 decimal places on two consecutive
iterations. In most cases convergence was achieved in

fewer than 15 iterations and in very few cases were more

than 50 iterations required.




NUMERICAL EXAMPLE

Table 1 gives the results of temperature accelerated
life tests on electrical insulation in 40 motorettes,
originally reported by Crawford [1]. Ten motorettes were
tested at each of four temperatures. Testing was termi-
nated at different times at each temperature, resulting in
a total of 17 failed units and 23 unfailed ones. The model
used to analyze the data assumes that:

i) for any temperature, the distribution of time

to failure is logrnormal
ii) the standard deviation o of the lognormal time
to failure distribution is constant, and
iii) the mean of the logarithm of the time to failure
Hy is a linear function of the reciprocal
X = 1000/(T+273.2) of the absolute temperature
T, that is
B, = By ¥+ B

X 0 1
where BO’ Bl and o are unknown parameters. The

X

preceding model is often referred to as the
Arrhenius relationship.

Nelson and Hahn [(10] fitted the given data to the
preceding relationship using linear estimation methods,
an¢ Hahn and Nelson [ 3] used graphical and maximum
likelihood estimation techniques to fit the same data
and compared the results from the various methods. We
now fit the data using the iterative least squares method.

The procedure is described below and illustrated in Figure 1.
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Iteration 0

Step 1: The censored observations are initially taken

as failures, i.e., the 10 unfailed units at 150°C are

assumed to be failures at 8064 hours, the 3 unfailed units

at 170°C are assumed to be failures at 5448 hours, etc. Then
simple least squares is used to fit the assumed relation-
ship. This leads to the following initial parameter
estimates:

8. 0¥ _ _4 9307, él

0
5(0)

(0} . 3.747m,

= 0.1572
Step 2: From the initial fit, unconditional expected
failure times for each of the censored values are estimated.
For example, at 220°C, i.e., (x = 1000/(220 + 273.2) = 2.03),
the mean log time to failure is estimated from the initial
fit to be

G(O)Z.OB = -4.9307 + 3.7471[1000/(220+273.Zﬂ = 2.6668.
Thus, based upon the initial fit, log time to failure at
220°C is estimated to follow a normal distribution with an
estimated mean of 2.6668 and an estimated standard deviation
of 0.1572.
Censoring at 220°C occurred at 528 hours, i.e.,

Cy 03 = log (528) = 2.7226

If one assumes a log normal distribution for time to
failure, the censoring time is equivalent to an estimated
normal deviate of

(o]

z=%2.03" u'92.03 = 2.7226 ~ 2.6668 = 0.3552

o(0) 0.1572
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The resulting estimate of the expected log time to failure
for each of the 5 unfailed units at 220°, conditional
upon their observed running times of 528 tours, is

therefore

At e A0 pia) 0.3745
Uy 03 = 203 ¥ O  Top(g) = 2-9668 + (0.1572) yTGmggy = 2.83

or 676 hours. Similarly, estimates of the conditicnal
expected failure times for the unfailed units at the other
tkree temperatures are
150°C: 4.0384 log hours (or 10,924 hours)
170°c: 3.8089 log hours (or 6,440 hours)
190°C: 3.3295 log hours (or 2,135 hours)

Iteration 1

Step 1: The estimated log times to failure for the
censored observations obtained in Step 2 of Iteration 0
are used to fit a new least scuares line to the data.
The following parameter estimates result:

~ (1)

(1) (1) _ 39263, ¢ = 0.1799

Bo = -5.2603, B
Step 2: Using the estimates from Step 1 of this iteration
the following revised estimate of the conditional expected
time to failure is calculated for each of the censored
observations:
150°Cc: 4.09852 log hours (or 12,546 hours)
170°C: 3.83972 log hours (or 6,914 hours)
190°C: 3.36553 log hours (or 2,320 hours)
220%: 2.85846 log hours (or 722 hours) =u'yl).

Subsequent Iterations: The preceding steps are repeated

until convergence is achieved. This example required 17

- 12 -




iterations. The final parameter estimates are

~ A

éo = -5.81829, &, = 4.20426, 0 = 0.204322
and the final estimates of the expected time to failure for
the censored observations are

150°C: 4.17297 log hours (14,893 hours)

170°c: 3.87676 log hours (7,529 hours)

190°C: 3.40090 log hours (2,517 hours)

*(17)

220°C: 2.87982 log hours (758 hours) = yu 3. 83

Table 2 shows the results obteined at various
iterations. In this example results close to the final
values, from a practical viewpoint, were obtained after
12 iterations.

The iterative least squares estimates are compared
in Table 3 with the maximum likelihocd estimates obtained
by Hahn and Nelson [ 3] for the same data. The results
from the two methods are quite similar and, except for
the residual error stendard deviation, agree more closely
with each other than with the estimates obtained from
graphical and linear unbiased estimation. The latter
two methods do not, however, use the test data at 150°C,
where none of the 10 test units failed. If one ignores
the 150°C data, the iterative least squares estimates
and the maximum likelihood estimates were even closer to
each other than before and again agreed better with each
other than they did with the graphical and linear unbiased

estimates (details available from the authors).
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5. RESULTS OF SIMULATION ANALYSIS

A.

Description of Study

A simulation analysis was used to compare the
properties of the iteretive least squares procedure
with those of the method of maximum likelihood. A
linear relationship was assumed between the mean (log)
time to failure and the applied (log) stress x , i.e.,

= BO + le
and at a given stress, the (log) time to failure was
assumed to follow a normal distribution.with a constant
standard deviation o , where 80, Bl and ¢ are unknown
parameters.

Without any loss of generality, BO and Bl were set
equal to 1 and -1, respectively. Testing was assumed
to be conducted uniformly over the interval (0,1), i.e.,
ranging from the minimum stress of x = 0 (with Mg = 1)
to the maximum stress of x = 1 (with vy = 0).

Simulation analyses were conducted at each of the
14 different conditions shown in Table 4. The following
variables were studied:

1. The censoring probability p at the minimum
stress, i.e., at x = 0.

2. The ratio r of the censoring prohability at
the minimum stress (x = 0) to the censoring

probability at the maximum stress (x = 1).

3. The number of equally spaced test stresses k

over the interval from x = 0 to x = 1. One test




unit per stress was assumed at 11 of the
conditions; multiple test units per stress
were evaluated at the other three conditions.
Specification of p and r, together with the stated
assumptions, defines the censoring time Cy at each

stress and also the common stancdard deviation o .

The 14 conditions were as follows:

, - The "center" condition of p = 0.75, r = 5 and

ﬁ@ k = 10; thus, the censoring probabilities over the
10 stresses ranged from 0.75 at x = 0 to 0.15 at ]
x = 1 (Condition 1).

- The 8 combinations of conditions (in a full factorial
arrangement) of p = 0.5 and 0.95, r = 2 and 10 and
k = 5 and 20 (Conditions 2 through 9).

4 - The two conditions with p = 0.75 and r = 5 (in both

| cases) and with k = 5 and 20 (Conditions 10 and 11).

- The condition with p = 0.75, r = 5 and 3 test units
at x = 0 and x = 1 and 4 test units at x = 0.5
(Condition 12).

- The condition with p = 0.75, r = 5 and 5 test units

at x 0, 3 test units at x = 0.5 and 2 test units

at x 1 (Condition 13).
| - The condition with p = 0.75, r = 5 and 2 test units

at x = 0, 3 test units at x = 0.5 and 5 test units

h
1

at x 1 (Condition 14).

Enough simulations were: conducted at each of these

l 14 conditions so as to obtain 1,000 runs (5,000 and

- 15 -
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10,000 runs at some conditions) with one or more
censored observations and two cr more uncensored

ones. Table 4 shows for each condition the number

of evaluated simulation runs, the average number of

i censored observations in these runs, and also percent

of added unevaluated runs (relative to the number of

evaluated runs) at each test condition resulting in

0, k-1 and k censcred observations. 1
In each simulation run, failure times were randomly

generated under the previously stécted assumed model.

f The assumed model was fitted using least squares
regression analysis based on the complete data (CLS)
before censoring. All observations exceeding c, were

3} then assumed to be censored at c ard new fits were

* obtained using iterative least squares (ILS) and

maximum likelihood (ML) .

B. Summary of Results

l. Overall Summaries

i

Tables 5 and 6 summarize the following results

of the simulation analyses:
- The estimated regression intercept and mean

at the low stress (Bo = = 1) (Tables 5A and 6A).

Ho
- The estimated regression slope (Bl = =1) (Tables
5B and 6B).
- The estimated mean at the high stress
By * By =y = 0) (Table 5C).
- The estimated standardized residual error

standard deviation, i.e., the ratio of the

I calculated residual error standard deviation

- 1§ =
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to the true residual error standard j

deviation (o' = 1) (Tables 5D and 6C).

Each part of Table 5 provides a comparison,
for each test cordition, of (1) the average,
(2) the standard deviation, (3) the root mean
square error and (4) the minimum and maximum
values of the desired estimates usirg the CLS,

ILS and ML methods. This table is based upon

those simulation runs which resulted in one or
more censored observations and two or more
uncenscred ones. The simulations which did not
result in any censored observations were excluded
because, in these cases, CLS, ILS and ML provide
identicél results (except that the ML estimate
of the residual error standard deviation is
smaller than the CLS and ILS estimates by a
factcr of Bn—Z)/n]l/ZL Also, those simulations
with all censored observations or with only
a single uncensored cbservation were excluded
because no ML estimates can be obtained for them.
As a result of these exclusions, the resulting
(conditional) CLS estimates of RO and Bl are
no longer unbiased.

Table 6 provides, for each test condition,
(1) paired comparisons of the average difference,
(2) stardard deviation of differences (3) mini-
mum and maximum differences in estimates for

ILS - ML, ILS - CLS, and ML - CLS with regard

- 17 =
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to “0 and B] and similar statistics for the

ratios with regard to o' and

(4) evaluations of Pitman closeness (see Pitman

f13}), i.e., the percentage of simulation

runs for which:

- The ILS estimates are closer to the true
parameter value than are the ML estimates.

- The ILS estimates are closer to the true
parameter value than are the CLS estimates.

- The ML estimates ere closer to the true
parameter value than are the CLS estimates.

Specialized Summaries

Table 7 provides detailed two-way tabulations

showing the estimates of the regression intercept

and, equivalently, the mean at the low stress (Bo = 1)

from the 5000 simulations conducted at Condition 1

for the following:

- Iterative least squares versus maximum

likelihood (Table 7A).

- Iterative least squares versus complete

least squares (before censoring) (Table 7B).

- Maximum likelihood versus complete least

squares (before censoring) (Table 7C).

Although not given, similar detailed comparisons

have been obtained for the estimates of the slope
coefficient and of the residual error standard
deviation, and also for each of the other 13

conditions.
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Discussion of Results

Inspection of Tables 5, 6 and 7 indicates that,
for most of the conditions considered, the iterative
least squares method and the method of maximum
likelihood yield very similar results (see especially
Table 7A). A notable exception was Condition 6
(discussed further below).

As one might expect, in some cases both ILS and ML
gave biased estimates of appreciable magnitude at
scme or all of the 5 conditions where there was a
large number of unevaluated simulations due to obtaining
0, k-1 or k censored observations (Conditions 2,3,4,5
and 10). In these cases, the evaluated CLS estimates
are also biased, although sometimes the magnitude
of the bias is smaller. In addition to these 5 condi-
tions, estimated biases exceeding 10% resulted in
- Estimating BO and Bl using both ILS and ML at

two further conditions.

- Estimating B, + B, (i.e., the mean at the high stress
0

1
condition) using ILS at one further condition.

- Estimating o¢'using ILS at seven further conditions
and using ML at four further test conditions.
The estimated biases with regard to Bo, Bl and

BO + Bl were positive at some conditions and negative

at others. 1In evaluating o', however, underestimates

were obtained, on the average, at almost all condi-

tions for both ILS and ML.




An overall comparison of the performance of the

iterative least squares and maximum likelihood
estimation methods at the 14 test conditions in
the simulation analysis is shown in Table 8. This

tabulation shows that there were i

- An approximately equal number cf conditions where
the average ILS estimate is closer to the true
parameter value than is the average ML estimate.

- A larger number of conditions at which the root
mean square error is smaller for the ILS estimate

§ than fcr the ML estimate, especially with regard
to Bo and Bl.

- A larger number of conditions at which the ILS
estimate has more simulaticn runs closer to the true

parameter value than does the ML estimate with

regard to 80, Bl and o'. In estimating o', however,
the average percentage of runs (averaged over the

14 conditions, weighting each condition equally)

at which the ILS estimate is closer to ¢' was
essentially equal to that for which the ML estimate
was closer.

On balance, then, the propcsed iterative least squares

procedure gave results which are at least competitive

with those obtained by maximum likelihood. Iterative
least squarecs did poorest relative to maximum likelihood
at Condition 6, although maximum likelihood results

at that condition were also quite poor. The censoring

probability at this condition ranges from 0.95 at

the low stress to 0.475 at the high stress and, on

- 20 =
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the average, about three-guarters of the 20 observa-
tions are censored, the highest proportion among the
14 test conditions. The large number of run-outs,
especially at or near the low stress, (1) greatly bias
the initial fit and this is not fully compensated

for in the later iterations and (2) lead to an
appreciable underestimate of the residual error
standard.

An underestimate of the residual error standard

deviation estimated by the iterative least squares
‘method versus that from maximum likelihood also was
found at two other conditions (Conditions 8 and 14)
at which there are multiple censored observations at
the same or neighboring stresses. (This might also
have been the case in the motorette example of
Section 3.) Since. the censored observations at the
same (or similar) stresses have the same (or similar)
estimates of the expected value, the variability among
them is small and thus contributes little to the
overall estimate of variability. Some possible remedies
for this are suggested in Section 7.

in conclusion, we note that the relatively good
results of iterative least squares when compared with
maximum likelihood may be due to the small sample bias

in the maximum likelihood estimates. An assessment of

the magnitude of this bias is a by-product of our

simulation analysis.




Comment on Calculaticnal Requirements

A major reason for proposing the jterative least
squares approach is that the calculations are less
than tfrose required for maximum likelihood estimation.
For example, the iterative least squares calculations
can be programmed with fewer than 50 FORTRAN statements,
whereas the maximum likelihood calculations using a
Powell optimization routine require approximately 300
FORTRAN statements. The average number of function
evaluations for the 14 test conditions in the simulation
analysis was about 15. For problems cf this type,
maximum likelihood usually requires at least 50 function
evaluaticns. It is possible, however, that some of
the more recently suggested maximum likelihood algorithms
(see, for example, Dempster, Laird and Rubin [ 2]) reduce

the required calculational effort for this method.
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GENERALIZATION OF RESULTS

Most of the preceding discussion has dealt with the
special situation where:
- There is a simple linear relationship (between stress
and time to failure).
- The random variation follows a (log) normal distribution.
- Censoring is to the right, i.e., the censored values
equal or exceed the observed values and occur at the
same value (or time) for a particular condition (or
stress) .
The iterative least squares procedure is not, however,
limited to this specialized situation.

More general regression relationships

The proposed method handles censoring of the dependent
variable. It is not limited to any special form of relation-
ship and can be applied to multiple regression or, more
generally, to any situation for which least squares pro-
cedures are used.

Other distributions for random variation

Let f(yx) and F(yx) denote the probability density
function and cumulative distribution function, respectively,
of the random variable y at the condition x and let censoring
to the right occur at the value Cy of y. Also let y; denote
the value which would be observed for a censored observation
if it were observable, e.g., the time at which a run-out
would fail if there were no censoring. Then the conditional
probability density function of an observation censored to

the right, i.e., one which is known to exceed the censoring

- 33 -
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value c_, is that of the random variable o truncated to

the right at Cyr Therefore
* — - *
fy2) = £y )/ [1-F(c ) , y& > ¢

and the conditional expected value of the censored observa-
ticn (i.e. its expected failure time) is

fly,Ody, /[1-F(c,)] . (3)

(e8]

e
M fcxyx

Thus, the proposed method requires evaluation of the conditional
expectation given in equation (3). If the random variation

is normally distributed this results in eqguations (2a) and

(2b). Similar results can be obtained for cther distributions
for the random variation.

Other censoring schemes

In practice, one may encounter situations involving
censoring other than to the right. For example, in a life
test, censoring may occur at random times due to accident or
breakdown of equipment. Also, censoring other than to the
right can occur when failures are discovered only at periodic
inspections.

The iterative least squares concept, just as the method
of maximum likelihocd, applies to such more general censoring
schemes. However, when the censoring cccurs early, it
might be better in the initial least squares fit to ignore
the censored observations instead of treating them as
failures. Also, a procedure which assigns varying lesser
weights to the censored observations than to the uncensored
ones (see next section) might be especially appropriate for

more general censoring schemes.
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AREAS FOR FURTHER STUDY

A theoretically based study of the properties of the
proposed iterative least squares approach is warranted. 1In
addition, some specific areas for further consideration are
reviewed below.

Assigning less weight to censcred observations

The informational content of the censored observations
is less than that of the uncensored ones. For example,
in censoring to the right, the earlier the censoring occurs,
the less is the information provided by the censored observa-
tion. This might be taken into concideration in the
iterative least squares analysis by assigning less weight
to the censored observations than to the uncensored ones and
by varying these weights depending on the censoring point.
The following is one possible weighting scheme for tre censored

observation v; at the condition x:
2
wylx) = 1 - [o (y;)/oz]

where o denotes the (constant) residual error standard devia-
tion and o(y;) denotes the standard deviation of the truncated
distribution of an observaticn known to exceed Cye For
example, in a product life analysis with censoring to the
right, o denotes the standard deviation of the distribution

of time to failure at a constant stress and o(y;) denotes

the standard deviation of the distribution of the time to
failure of a unit at stress x which is known tc be unfailed

at time C,. In particular, for normally distributed random

variation, it can be shown (see Nelson L9]) that, using the
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notation of Section 3,

1
o(yt) = oll + kf(2) /[1 - F(2)]] - [£(2/(1 - F(2))?)

L2

where, as before, z = (cx - ux)/o.

This procedure assigns a weight of 1 to all uncensored
observations and, for normally distributed random variation,
leads to a weight which approaches 0 with decreasing Cy and
a weight of 1 with increasing Cy- This scheme may, however,
be inappropriate when the random variation is not normally
distributed. For example, if the time to failure distribu-
tion is exponential, all the censcred observations would
receive a weight of 0. For a Weibull distribution with a
shape parameter less than 1, censored observations would
receive negative weights.

An alternative simple scheme is to wveight the censored
observation proportional to the associated cumulative
(failure) probability at the censoring ponint, i.e., to
assign to an observation censored to the right of Cy the
weight

w,(x) = F(c,)
and to give all uncensored observations a weight of 1.

In practice, the required distribution ordinates and
cumulative probabilities are, of course, unknown. In
their place one would use the estimates obtained in the
most recent iteration. For the initial iteration, some
working rule needs to be developed to obtain an appropriate
(initial) weight between 0 and 1 for the censored cbservations.

The reason for using weighted iterative least squares

estimation is the exjpectation that it will lead to better

- 26 -
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performance than the proposed unweighted estimator. The
weighting procedure, however, complicates the method and
thits compromises our claim of simplicity. Despite this,

a computer program based upon a weighted iterative least
sguares approach is still likely to be appreciably simpler
to develop, use and explain than one based upon maximum
likelihood.

Development of statistical inference procedures and
modification of standard regressicn programs

The preceding discussion has been concerned with
obtaining point estimates using the proposed iterative least
squares procedure. Frequently, statistical intervals and
hypothesis tests are also desired. With the method of
maximum likelihood, this is accomplished using asymptotic
theory. Such inferences tend to be unconservative for
small sample size situations.

Using an iterative least sguares approach, one can

obtain unconservative inferences by applying the usual

least squares inference procedures to the results of the
final iteration and treating the censored observations as
if they were uncensored. 1In addition, it is possible to

obtain conservative confidence intervals and prediction

intervals by ignoring the censored

observations altogether in obtaining the length of the
desired interval (but not in obtaining the point estimate g
arounc which the interval is constructed) after, perhaps,
adjusting for bias in the estimate of the residual error

standard deviation.

ek, e
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A compromise between such overly unconservative and

overly conservative approximations would be to calculate
the bounds, as well as the original estimates, using a
scheme which assigns varying vieights to the censored observa-
tions (see above discussion).

Along similar lines, consideration might be given
to appropriate ways of adapting standard computer programs
for regression analysis to handle residual plots with
censored data and for performing various stardard analysis
of variance tests to assess the significance and adequacy
of a fitted model with censored data. In particular, a
referee has suggested a lack of fit test based on censored
versus non-censored errcrs as a natural extension of our
procedures end as a useful method of evaluating the lack of
fit of the assumed equation (see also Nelson [12]).

Specialization to a single condition

The iterative least squares procedure is not limited
to situations dealing with a regression relationship. It
can similarly, and more simply, be applied when data at a
single condition are available and estimates are desired
only for the parameters of the distribution for the random
variation at that condition. We have been concerned with
the more general regression situation because (i) this is
the type of practical problem which we have encountered
most frequently, and (ii) special simplified procedures
are already available for the single condition situation.
However, this situation might be useful for studying various
generalizations and extensions, such as the properties

of iterative least squares under different censoring
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schemes or the effect cf different start-up or weighting

procedures. The simpler single condition situation might
also be appropriate for a theoretical study of the properties
of the propcsed procedures.

Use of results from early iterations

The number of iterations to convergence is important
for those who use an iterative least squares approach to
analyze censored data via a standard least squares computer
routine or, for example, a hand calculator. It is also of
interest to determrine how close one can come to the final
convergence values after a small number, such as 2,4, or
5, iterations. 1In this regard, procedures to speed conver-
gence also merit consideration.

Bias adjustment procedures

The results of the simulation analysis indicate bias
at some of the conditions in the iterative least squares
estimates, as well as in the maximum likelihood estimates,
especially in the estimate cf the residual error standard
deviation. The simulation results might themselves be used
to obtain appropriate bias correction factors.

Procedures for correcting for the underestimate of the
residual error standard deviation within the iterative scheme
also warrant consideration. An upward adjustment factor
might be arrived at based upon the propcrtion of censored
observations in the data. One possibility is to reduce the
degrees of freedom in calculating the residual error standard
deviation. 1In a private communication, R. Regal has
suggested to us an alternative scheme for calculating the

residual error standard deviation based upon the

- 29 -
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EM-algorithm discussed in a

Laird and Rubin [ 2 1.

paper by Dempster,

The EM procedure can be viewed as

a generalization of the method propcsed by Hartley {41 and

by other authors referenced in [2] . It uses the same expression for

the slope and intercept estimates &s our proposed method.

|
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CONCLUSION

This paper proposes an alternative scheme for analyzing
censored data which might be more attractive to some practi-
tioners than existing methods. This is because the proposed
procedure uses well-known least squares techniques, requires |
less computation than maximum likelihood, and should be
easier to explain to non-stectisticians.

A simulation analysis indicates that the proposed
method gives statistically reasonable results which, for
the situations considered in the ewvaluations, are at least
competitive with those from maximum likelihood. Although
the simulations were limited to cases where censoring is
to the right and where the censored values exceed the
uncensored ones, this is the situation which is frequently

encountered in the analysis of accelerated life data and

many other practical applications.
As indicated in Sections 6 and 7, various generaliza-
tions of tlese results are possible. To extend and

refine the results obtained to date, further work is

warranted.
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TABLE 1

INSULATION LIFE IN HOURS AT VARIOUS TEST TEMPERATURES

Test Temperature

2)

1) 170°C

150°C

1764
2772
3444
3542
3780
4860
5196

1)
failure at 8064 hours.

190°c”

408
408
1344
1344
1440

All 10 motorettes at 150°C still on test without

220°c?)

408
408
504
504
504

2)3 motorettes at 170°C still on test without failure

at 5448 hours.

3)5 motorettes at 190°C still on test without failure

at 1680 hours.

4)5 motorettes at 220°C still on test without failure

at 528 hours.
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TABLE 3
COMPARISON OF RESULTS FROM ITERATIVE LEAST SQUARES
AND MAXIMUM LIKELIHOOD FITS FOR INSULATION LIFE DATA EXAMPLE

Estimates from

Iterative
Least Maximum Likelihood
Squares Method
Intercept Coefficient (Bo) -5.818 -6.027
(+1.489%)
Slope Coefficient (Bl) 4.204 4.314
(+0.684%*)
Log Standard Deviation (o) 0.204 0.259
Median Life in Hours at: ,
220°C 508 530
190°C 1812 1940
170°C 4654 5080
150°C 13060 14680
130°Ch** 40638 47000

(27500 to 79500%**)
10% Point of Life Distribution at:
L30°Ch** 22230 21900

*Bounds of approximate 90% confidence interval
**Approximate 90% confidence interval
***Extrapolated beyond range of data
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TABLE 8
OVERALL COMPARISON OF THE PERFORMANCE OF THE ITERATIVE LEAST SQUARES
AND MAXIMIMUM LIKELIHOOD ESTIMATION METHODS AT THE 14 TEST CONDITIONS
IN THE SIMULATION ANALYSIS

Standardized
Mean Residual
Intercept at Error
and Mean at High Standard
LLow Stress Sloge Stress Deviation
Number of Conditions Out of 14: (Bg) (By (Bo*B1) (a")
1) For which average ILS estimate 7 6% 4% 7
is closer to true parameter
value than i8 ML estimate
2) For which ILS estimate has 12 i3 9% 8
lower root mean square error
than ML estimate
3) For which ILS estimate has 10 10 *k 10
more simulation runs closer
to true parameter value
than ML estimate has
Average percentace of runs (over 63.8% 56.2% *ok 50.6%

14 conditions) for which ILS
estimate 1is closer to true
parameter value than ML estimate

*
Out of 13 conditions.
**Not calculated.
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